The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine Characteristics and Siting

نویسنده

  • Charles S. Zender
چکیده

For the first time, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub height, usable portion of the wind speed distribution and siting depth. Mean wind power increases by 30%, 69% and 73% within the tropics and northern and southern hemisphere extratropics, respectively, between hub heights of 10 m and 100 m. A turbine with a cut-out speed of 25 m s−1 (30 m s−1) within the northern hemisphere storm track harvests between 55% (82%) and 85% (> 98%) of available power. Within this region, a 2–3m s−1 change in cut-out speed can result in a 5–7% change in usable power. 80 m wind power accumulates at a rate of 20–45 MW km2 m−2 per meter depth increase from the shore to the shelf break. Beyond the shelf break, wind power accumulates at a slower rate (< 12 MW km2 m−2 m−1). The combined impact of all three characteristics on available wind power is assessed for three technology tiers: existing, planned, and future innovations. Usable percent of 80 m available global ocean wind power ranges from 0.40% for existing to 2.73% for future envisioned turbine specifications. Offshore wind power production is estimated using three offshore wind turbine power curves, three ocean depth limits and two siting densities. Global offshore wind power is as much as 39 TW (54% of onshore) and is maximized for the smallest and least powerful of the three turbine specifications evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

[1] For the first time, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub height, usable portion of the wind speed distribution, and siting depth. Mean wind power increases by 30%, 69%, and 73% within the tropics and Northern and Southern Hemisphere extratropics, respectively, between hub heights of 10 m and 100 m. A turbine with a cut‐out spe...

متن کامل

Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data

Wind energy, as a vital renewable energy source, also plays a significant role in reducing carbon emissions and mitigating climate change. It is therefore of utmost necessity to evaluate ocean wind energy resources for electricity generation and environmental management. Ocean wind distribution around the globe can be obtained from satellite observations to compensate for limited in situ measur...

متن کامل

Global ocean wind power sensitivity to surface layer stability

[1] Global ocean wind power has recently been assessed (W. T. Liu et al., 2008) using scatterometry-based 10 m winds. We characterize, for the first time, wind power at 80 m (typical wind turbine hub height) above the global ocean surface, and account for the effects of surface layer stability. Accounting for realistic turbine height and atmospheric stability increases mean global ocean wind po...

متن کامل

A SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems

In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...

متن کامل

Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region

In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009